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Predictive vs Prescriptive BPMon

Predictive BPMon
“What will happen and when?”

• Use process monitoring data “to forecast 
how a running process instance will unfold” 
[Pfeiffer et al. 2025 @ BISE]

• E.g., will order-to-cash process complete 
successfully?

Prescriptive BPMon
“When to intervene and how?”

• Assist process managers by raising alarms 
to ”trigger proactive process adaptations” 

• E.g., schedule air delivery instead of road 
delivery to ensure timely completion of 
transport process
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[Pfeiffer et al. 2025 @ BISE]: https://link.springer.com/article/10.1007/s12599-025-00936-4
[Metzger et al. 2023 @ BPM]: https://doi.org/10.1007/978-3-030-58666-9_16

https://link.springer.com/article/10.1007/s12599-025-00936-4
https://doi.org/10.1007/978-3-030-58666-9_16
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Predictive BPMon

AI-based (ML-based) prediction
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Predictive BPMon

AI-based (ML-based) prediction

Prediction accuracy

• “predict as many true deviations as possible, 
while predicting as few false deviations as possible”

Typical ML models

• Decision trees 

• Linear regression

• Random forests = ensembles of decision trees
(e.g., gradient boosted trees)

• Deep artificial neural networks 
(e.g., RNNs, such as LSTMs)
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Prescriptive BPMon

Problem Statement: 
Which prediction to trust and act upon, i.e., when to raise an alarm?

Fundamental trade-off between:

(1) Prediction accuracy

• False positive prediction → unnecessary adaptation

• False negative prediction →missed adaptation

(2) Prediction earliness

• Later predictions → less time and options 
for process adaptation

• Earlier predictions → lower prediction accuracy

→ How to reconcile this trade-off?
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Prediction Accuracy: LSTM, RF
% of traces reaching prefix length j
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Using a Static Prediction Point
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Idea

• Considers fact that later predictions typically are more accurate 

• Use predictions of well-chosen, static prediction point at prefix length jfix

Approach [Metzger et al. 2017 @ CAiSE]

• Calculate  jfix by analyzing average prediction accuracy of model 
for each prediction point j

• Choose earliest prediction point with highest accuracy 

Shortcomings

• No alarms raised for cases shorter than jfix

• Average accuracy no direct indicator for accuracy of individual case

[Metzger et al. 2017 @ CAiSE]: https://doi.org/10.1007/978-3-319-59536-8_28

https://doi.org/10.1007/978-3-319-59536-8_28
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Empirical Thresholding
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Idea

• Use reliability estimates to account for accuracy of individual predictions

• Use earliest prediction with reliability estimate > threshold

• Reliability estimates can be computed from ensembles of prediction models 
(e.g., using bagging)

Approach [Fahrenkrog-Petersen et al. 2002 @ Knowl. Inf. Syst.]

• Use dedicated training process (involving dedicated training data set) to determine 
suitable threshold

• Apply cost model (which defines adaptation, compensation and penalty costs)

[Fahrenkrog-Petersen et al. 2002 @ Knowl. Inf. Syst.]: https://doi.org/10.1007/s10115-021-01633-w

https://doi.org/10.1007/s10115-021-01633-w
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Empirical Thresholding

10

Shortcomings

• Threshold is optimal for training data, but may not remain optimal over time, 
as concept drifts of process environment and data may impact prediction accuracy

Mean absolute prediction error (MAE) per case
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Online RL

Idea

• Learn action selection policy 
π at runtime

• π gives action aj in state sj

• Positive rewards rj if action aj

(here: raising alarm)
was a good decision

Challenges

• Balancing 
exploration  exploitation

• Learn new knowledge

• Leverage learned knowledge

• Typical approach: -decay

• Challenged by concept drift

• Reward engineering
• Defining an effective reward function r
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Our Online RL Approach
Balancing exploration  exploitation

• Policy-based Deep RL (PPO) as RL algorithm

• Uses and optimizes parametrized stochastic action selection policy π
represented as Deep ANN

• Can handle multi-dimensional, continuous state spaces

• Generalizes well over unseen neighboring states

• Can natively handle non-stationarity and thus concept drifts of prediction 
model (no need to balance exploration vs. exploitation)

Reward engineering
• SOTA approaches e.g., [Branchi et al. 2022 @ BPM; Dasht Bozorgi et al. 2012 @ 

InfoSys] assume alternative process outcomes if not adapted is known
→ Not realistic in practice!

• ➔ Artificial curiosity to capture above shortcoming
• Use intrinsic rewards (from within the RL algorithm) 

in addition to extrinsic rewards (from environment)
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[Branchi et al., 2022 @ BPM]: https://doi.org/10.1007/978-3-031-16171-1_9
[Dasht Bozorgi et al. 2023 @ InfoSys]: https://doi.org/10.1016/j.is.2023.102198

https://doi.org/10.1007/978-3-031-16171-1_9
https://doi.org/10.1016/j.is.2023.102198
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Our Online RL Approach

Reward Function

• d: rate of adaptations among last seen 30 cases 
→ punishes high adaptation rates 
→ rewards exploring not raising alarms 

• b: decreases linearly with prefix-length
→ prefer early alarms over late alarms

• c(d, v): curiosity modifier
v = negative predictive value of 
last 100 non-adapted cases
→ high v = high accuracy in raising alarms 
→ no longer need to explore raising alarms later
→ small d
→ extrinsic rewards sufficient for learning
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Strong reward signal
Facilitates faster learning convergence than using actual costs

Reward signal including intrinsic rewards
Addresses the problem of unknown alternative outcome
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Our Online RL Approach

Example (BPIC 2017 – RNN)
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Case k

red: normalized reward
blue: earliness (0 = end, 1 = beginning of process)
black: rate of alarms
green: rate of accurate alarms
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Research Question

• Cp: Penalty costs
• Cost of undesired process outcome

• E.g., contractual penalties

• Ca: Adaptation costs
• Cost of intervention

• E.g., additional personnel costs when 
increasing staffing
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• α: Adaptation effectiveness
• Probability that intervention was effective

• Earlier prediction points have higher α to model fact 
that more time/options are available

• Cc: Compensation costs
• Cost of roll-back or compensation activities

• E.g., compensating client for unnecessary 
interventions

RQ: “How do the approaches compare in terms of cost savings?”

Cost Model:

→ We explore 64 different cost model configurations
→ We exploit 2 different prediction models: RF, RNN 
→ We use 4 real-world data sets: BPIC12, BPIC17, Traffic, Cargo

= 512 
Experiments
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Results
Average costs

→ No single approach works best for all data sets and cost model configurations

→ But: More AI-intensive techniques outperform simpler approaches
• Tend to work in many situations – with few exceptions 

• Consistently deliver cost savings – with Empirical Thresholding delivering higher savings

→ Detailed analysis in our InfoSys paper
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Data Set

Prediction 

Model Static Empirical Online RL Empirical Online RL

BPIC12 LSTM 7% 29% 64% 51% 26%

BPIC12 RF 5% 50% 45% 34% 36%

BPIC17 LSTM 0% 47% 53% 25% 12%

BPIC17 RF 13% 19% 69% 20% 20%

Traffic LSTM 16% 0% 84% / 24%

Traffic RF 30% 57% 0% 16% /

Cargo LSTM 7% 60% 33% 47% 44%

Cargo RF 20% 80% 0% 45% /

Relative number of situations 

when approach performs best

Average, relative cost savings

when approach performs best
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Initial Recommendations
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Outlook

Speed-up of Online RL

• RL needs to learn basic trade-off between accuracy and earliness; e.g., 

→Use of Meta-RL to reuse policies of similar learning problems

→Offline pre-training of RL model (e.g., using synthetic data generated from 
simulation models)

→Expose RL to “important” states determined using static analysis of simulation 
model [Mohsen et al. 2025 @ SEAMS]
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[Mohsen et al. 2025 @ SEAMS]: https://ebjohnsen.org/publication/25-seams/25-seams.pdf

https://ebjohnsen.org/publication/25-seams/25-seams.pdf
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Outlook

Explainability of alarms
• Reliability estimates only provide little insights why alarm was raised

→Use of explainable RL techniques [Metzger et al. 2024 @ ACM TAAS]

Reward Decomposition

• Reward function decomposed into 
sub-functions (reward channels) 

• Provides contrastive explanation of 
short-term goal orientation of RL

Interestingness Elements

• RL considered certain in current state 
if “easy” to predict next action
(estimated using evenness of probability distribution
over all actions)

• Facilitate selecting relevant actions; e.g.
certain vs uncertain
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[Metzger et al. 2024 @ ACM TAAS]: https://doi.org/10.1145/3666005

https://doi.org/10.1145/3666005
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Outlook

Explainability of alarms

• Is it help ful? → Empirical study [Metzger et al. 2024 @ ACM TAAS]

RQ: Human task performance with and w/out XAI?

• Task = concrete question related to 
RL decision making

• 73 participants

• Results:
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[Metzger et al. 2024 @ ACM TAAS]: https://doi.org/10.1145/3666005

https://doi.org/10.1145/3666005
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Outlook

Explainability of alarms

→ Leveraging GenAI (LLMs) [Metzger et al. 2023 @ ICSOC]

• Provide textual explanations 

• Facilitates dialogue between explainee and explainer
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[Metzger et al. 2023 @ ICSOC]: https://doi.org/10.1007/978-3-031-48421-6_22

https://doi.org/10.1007/978-3-031-48421-6_22
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Outlook

GenAI als alternative to DeepRL?

→ LLMs to generate alarms @ runtime 

• Idea: Transfer design-time usage 
of LLMs to runtime

• What “architecture” to use?
• E.g., with or w/out deep supervised learning for 

predictions?

• How to engineer the inputs for the LLM?

• ? E.g., how to convert the process monitoring 
data into specific prompts and/or RAG inputs

• What impact do hallucinations 
and bias have? 

27

Monitoring
data 
at prediction 
point j

Reliability
Estimate j

Extent of
Predicted
Deviation j

aj

Live Process Execution (Running BPM System; Process Managers; 
Process Workers)

Online LLM

Pre-
dict-
ion 

Model

Relative 
Prefix 
Length j

Action 
(raise alarm)

Generate 
Prompt

Generate 
Adaptation

LLM
(possibly with 

RAG)

Monitoring
data 
at prediction 
point j

aj

Live Process Execution (Running BPM System; Process Managers; 
Process Workers)

Online LLM

Action 
(raise alarm)

Generate 
Prompt

Generate 
Adaptation

LLM
(possibly with 

RAG)

?

?

?

?

?

?



www.adaptive-systems.org

Thank You!

28

Research leading to these results received funding from the 
EU’s Horizon 2020 research and innovation programme

under grant agreements no. 
731932 – TransformingTransport, 732630 – BDVe, 780351 – ENACT, 

871493 – DataPorts, 101070455 – DYNABIC


